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Introduction and Data

» All organisms are subject to mutations
» These new traits can change the selective value (fitness) of an individual
We call Fitness the ability of an individual with a certain genome to survive and reproduce

» How these mutations affect the selective value is a central question in evolutionary
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> Probabilistic Model
1. Z4 represents the noisy measure of the fitness of the cell in channel j € J at time t.
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» The density of the distribution of these effects is called the Distribution of Fitness Effect /

2. N{ represents the number of times the cell in channel j has mutated.
(N;(t),j > 1) are i.i.d Poisson processes with intensity A € (0, co).
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3. Xj represents the effect of the k-th mutation on the cell in channel j. (X7); >0 are i.i.d with ) _ ek "’-"‘_Ji |
density £ € LY(R) N L3(R). TPEEEECEECEECEECEEEEEEEEEEEV T EEEY EEECEE L

4. E,J represents the measurement noise at time t for channel .

(éJt)JZO are i.i.d and that E(¢}) = 0.

» We consider a noisy compound Poisson process: Figure 1:Measurement of the evolution of the fitness of several cell lines over time
Robert et al., 2018

Combine two classical problems in non-parametric inference.

» Deconvolution
Statement of the problem: Estimate the density of X; from observations of Z; on each » Decompounding

channel y € J

Statistical Strategy and statistical Results

» Strategy: Estimate the characteristic function of X :

(heuristic) If px(&) ~ @x(£), then F(x) ~ f(x)
» Indeed, the characteristic function ¢ox — Density f of X:
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» Theorem : For all reals 0 < t; < tp such that tp, < % log(Jt>)
Jt; - oo, Jtp — oo as J — oo and for any m < Ct 7 the following

iInequality holds
- 112 <lf—f ) 4 ot m du Figure 2:Reconstruction of the Gamma I(3) distribution with J channels, corrupted by a Gaussian
(H m.s — ] ) [1m — FII" + Z J(t2 — 1;)?2 /_m lpe(u)|? noise J (0, 1) with J € 10%,10°,10°,10" and t; = 0.1, t, =1,m = 3

4K 1,1 .(E[X,zl BT, om ) The estimator converges to f when J — oc.
Jt;  Jt2 T (Jt)?
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where K and C/ . depends on m, ty, t> and log . (-) T i "pact” ecti '
J,t1,t t1,t, 9EP s L1, 12 g Pe\)- 1. Is this estimator minimax? (i.e the "best” estimator among all estimators)
Futhermore, m can be chosen in an optimal way from data 2 Use several times ?

Building the estimator

» We write the characteristic function of the process on a single channel Z’. For . 1 L. i) L _ b7 (z )
: P =2 iZie 5L (w) =Y e ot (w) = [ 5

all t € R4, we have (z)
Vu € R, 902{(“) — o AttAtex(v) | e (u)
Consider two different times 0 < t; < ty, then
r 2, — o Mb—t1)+A(t2—t1)px(v)

j=1

» As there is no guarantee that the previous quantities will not explode, a cut-off
is added to ensure this.
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Px(u) =1+ t _ t1{ log Soztz(u) 1|Iog @2, (u)|<In(J) log Soztl(u) 1|I0ggBZ (u)|<|n(J)}
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Then . » We estimate f by Fourier inversion.
For any m € (0., oo) .
ox(u) = 14— (log oz, (1) — log o2, (1) pme@e)
2 — ¢t ~
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» It leads us to define Fm,a(X) = —/ e™ " x(u)du, x € R
1 27 J_m
px(u) =14 (log ‘Pzt (u) —log Sozt (U))
t — 4y !
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