Data assimilation methods with Neural Galerkin schemes

Joubine Aghili, Joy Atokple, Marie Billaud-Friess, Guillaume Garnier, Olga Mula, Norbert Tognon

January 27, 2024

Outline of the presentation

The Forward Problem
Mathematical formulation of the forward problem Numerical Experiments

The Inverse Problem
The first method
The second method
The third method

Next Steps

Appendix

The Forward Problem

The Forward Problem

We use methods from [Bruna et al., 2022].
$\mathcal{X} \subset \mathbb{R}^{d}$

$$
\begin{aligned}
& \qquad\left\{\begin{array}{cll}
\partial_{t} u(t, x) & =f(t, x, u), & (t, x) \in[0, \infty) \times \mathcal{X}, \\
u(0, x) & = & u_{0}(x) \\
\text { If } u_{0} \in L^{2}(x) \Longrightarrow u(t) \in L^{2}(x)
\end{array}\right. \\
& \qquad
\end{aligned}
$$

Examples:

- Advection-diffusion-reaction equation

$$
f(t, x, u)=b(t, x) \cdot \nabla u+a(t, x): \nabla \nabla u+G(t, x, u)
$$

- KdV equation

$$
f(t, x, u)=-\partial_{x}^{3} u(t, x)-6 u(t, x) \partial_{x} u(t, x) .
$$

The forward problem

Goal : Find an approximation \widetilde{u} of the solution u under the form

$$
\widetilde{u}(t, x)=U(\theta(t), x), \quad t>0, \quad x \in \mathcal{X}, \quad \theta \in \Theta
$$

Idea: If $\widetilde{u} \approx u$, then

$$
r_{t}(\theta, \eta, x):=\nabla_{\theta} \mathrm{U}(\theta(t), x)^{T} \cdot \eta-f(t, x, U(\theta)), \quad \forall x \in \mathcal{X}
$$

Minimize: We search for a good $\theta(t) \in \Theta$ such that for all $t>0$

$$
\begin{aligned}
& \dot{\theta}(t) \in \underset{\eta \in \dot{\Theta}}{\arg \min } J_{t}(\theta, \eta), \quad \text { where } \\
& J_{t}(\theta, \eta):=\int_{\mathcal{X}}\left|r_{t}(\theta, \eta, x)\right|^{2} d \nu(x)
\end{aligned}
$$

The forward problem

Key point : The Euler-Lagrange Equation

$$
\nabla_{\eta} J_{t}(\theta(t), \eta)=0
$$

This equation can be written as a system of ODEs

$$
\left\{\begin{array}{l}
M_{\theta}(t) \dot{\theta}(t)=F_{\theta}(t, \theta), t>0 \\
\theta(0)=\theta_{0}
\end{array}\right.
$$

where

$$
\begin{aligned}
& \theta_{0} \in \underset{\theta \in \Theta}{\arg \min } \int_{\mathcal{X}}\left|u_{0}(x)-U(\theta, x)\right|^{2} d \nu(x), \\
& M_{\theta}(t):=\int_{\mathcal{X}} \nabla_{\theta} U(\theta, x)^{T} \cdot \nabla_{\theta} U(\theta, x) d \nu(x), \\
& F_{\theta}(t, \theta):=\int_{\mathcal{X}} \nabla_{\theta} U(\theta, x) f(t, x, U(\theta)) d \nu(x)
\end{aligned}
$$

Main consequence : We transform the PDE as an ODE on θ.

The forward problem

We solve the KdV equation given by :

$$
\partial_{t} u=-\partial_{x}^{3} u-6 u \partial_{x} u, \quad t \in[0,4], x \in[-20,40],
$$

where $u(0, x)$ is given.
Solving the ODE system requires dealing with four issues:

- Estimating the operators $M(\theta)$ and $F(t, \theta)$ after proper specification of the measure ν : For giving samples $\left\{x_{j}\right\}_{j=1}^{n}$ from uniform probability measure, we get

$$
\begin{aligned}
M(\theta) & \approx \frac{1}{n} \sum_{j=1}^{n} \nabla_{\theta} U\left(\theta, x_{j}\right) \cdot \nabla_{\theta} U\left(\theta, x_{j}\right)^{T} \\
F(t, \theta) & \approx \frac{1}{n} \sum_{j=1}^{n} \nabla_{\theta} U\left(\theta, x_{j}\right) f\left(t, x_{j}, U(\theta)\right)
\end{aligned}
$$

The forward problem

- Designing a discrete time-integrator:
- Fixed point time integrator: RK4,Euler Methods,...
- Adaptative method: RK45, DOPRI5,...
- Choosing the parametrization $U(\theta)$: the neural network architecture, Shallow Network (One-hidden-layer)

$$
U(\theta, x)=\sum_{i=1}^{m} c_{i} \varphi\left(x, \omega_{i}, b_{i}\right)
$$

where

$$
\varphi(x, \omega, b)=e^{-\omega^{2}|x-b|^{2}}
$$

and the parameter $\theta=\left\{\left(c_{i}, w_{i}, b_{i}\right\}_{i=1}^{m}\right.$.

- Choosing the Python Librairy: Jax, Pytorch, Tensorflow, ...

Results in Pytorch

Figure: Solution to the KdV equation

Results in Pytorch

Figure: Solution to the KdV equation in $t=0$.

Results in Pytorch

Figure: Solution to the KdV equation in $t=1.0$.

Results in Pytorch

Figure: Solution to the KdV equation in $t=2.0$.

Results in Pytorch

Figure: Solution to the KdV equation in $t=3.0$.

Results in Pytorch

Figure: Solution to the KdV equation in $t=4.0$.

The Inverse Problem

Inverse Problems- Method 1

Assume that the function f in (1) depends on a time-dependent parameter denoted $\mu(t) \in \mathcal{P} \subset \mathbb{R}^{p}$.

$$
\left\{\begin{align*}
\partial_{t} u(t, x) & =f(t, x, u, \mu), & & (t, x) \in[0, \infty) \times \mathcal{X} \tag{1}\\
u(0, x) & =u_{0}(x) & & x \in \mathcal{X}
\end{align*}\right.
$$

Example: Parametric KdV equation

$$
\partial_{t} u(t, x)=-\partial_{x}^{3} u(t, x)-\mu(t) u(t, x) \partial_{x} u(t, x) .
$$

Inverse Problems- Method 1

Assumption: We do not know $\mu(t)$. Instead, we are given observations

$$
\dot{y}_{i}(t)=\dot{u}\left(t, x_{i}\right) \quad i=1, \cdots, m
$$

We now consider the ansatz

$$
\widetilde{u}_{\mu}(t, x)=\mathrm{U}(\theta(t), x, \mu(t)), x \in \mathcal{X}
$$

We search for the derivative of the parameters $\theta(t)$ and $\mu(t)$ such that for all $t>0$

$$
(\dot{\theta}(t), \dot{\mu}(t)) \in \underset{(\eta, \xi) \in \dot{\Theta} \times \dot{\mathcal{P}}}{\arg \min } G(t, \eta, \xi) .
$$

Inverse Problems- Method 1

The functional $G:[0, \infty) \times \dot{\Theta} \times \dot{\mathcal{P}} \rightarrow \mathbb{R}$ is defined as

$$
\begin{aligned}
& G(t, \eta, \xi):=\int_{\mathcal{X}}\left|\nabla_{\theta} U(\theta, x, \mu)^{T} \cdot \eta+\nabla_{\mu} U(\theta, x, \mu)^{T} \xi-f(t, x, U(\theta), \mu)\right|^{2} d \nu(x) \\
&+\lambda \sum_{i=1}^{m}\left|\dot{y}_{i}(t)-\nabla_{\theta} U(\theta, x, \mu)^{T} \cdot \eta-\nabla_{\mu} U(\theta, x, \mu)^{T} \cdot \xi\right|^{2}
\end{aligned}
$$

Key point : The Euler-Lagrange Equation

$$
\left\{\begin{array}{l}
\nabla_{\eta} G(t, \dot{\theta}, \dot{\mu})=0 \\
\nabla_{\xi} G(t, \dot{\theta}, \dot{\mu})=0
\end{array}\right.
$$

Inverse Problems- Method 1

This leads to a system of ODEs of size $\mathrm{n}+\mathrm{p}$

$$
\left(\begin{array}{cc}
M_{\theta \theta}+\lambda M_{\theta \theta}^{X_{m}} & M_{\theta \mu} \\
M_{\theta \mu}^{T} & M_{\mu \mu}+\lambda M_{\mu \mu}^{X_{m}}
\end{array}\right)\binom{\dot{\theta}}{\dot{\mu}}=\binom{F_{\theta}+\lambda \sum_{i=1}^{m} \dot{y}_{i}(t) \cdot \nabla_{\theta} U\left(\theta, x_{i}, \mu\right)}{F_{\mu}+\lambda \sum_{i=1}^{m} \dot{y}_{i}(t) \nabla_{\mu} U\left(\theta, x_{i}, \mu\right)}
$$

- the matrix in $\mathbb{R}^{n \times n}$ defined by

$$
M_{\theta \theta}(t)=\int_{\mathcal{X}} \nabla_{\theta} \mathrm{U}(\theta, x, \mu) \cdot \nabla_{\theta} \mathrm{U}(\theta, x, \mu)^{T} d \nu(x)
$$

and similarly for $M_{\mu \mu}(t)$ in $\mathbb{R}^{p \times p}$,

Inverse Problems- Method 1

- the matrix in $\mathbb{R}^{n \times n}$ defined by

$$
M_{\theta \theta}^{X_{m}}(t)=\sum_{i=1}^{m} \nabla_{\theta} \mathrm{U}\left(\theta, x_{i}, \mu\right) \cdot \nabla_{\theta} \mathrm{U}\left(\theta, x_{i}, \mu\right)^{T}
$$

and similarly for $M_{\mu \mu}^{X_{m}}(t)$ in $\mathbb{R}^{p \times p}$,

- the matrix in $\mathbb{R}^{n \times p}$ defined by

$$
M_{\theta \mu}(t)=\int_{\mathcal{X}} \nabla_{\mu} \mathrm{U}(\theta, x, \mu) \cdot \nabla_{\theta} \mathrm{U}(\theta, x, \mu)^{T} d \nu(x)
$$

- and the vector in \mathbb{R}^{p} defined by

$$
F_{\theta}(t)=\int_{\mathcal{X}} \nabla_{\theta} \mathrm{U}(\theta, x, \mu) f(t, x, \mathrm{U}(\theta, \mu), \mu) d \nu(x)
$$

and similarly for $F_{\mu}(t)$ in \mathbb{R}^{p}.

Difficulties of Method 1

- The problem is ill-defined.
- How to add the $\mu(t)$ inside the Neural Network?
- The initialisation is not clear.

Inverse Problems-Method 2

As an alternative to our first ansatz $U(\theta(t), x, \mu(t))$, we consider an approximation of $u(t)$ of the form

$$
\begin{equation*}
\widetilde{u}_{\mu}(t, x)=U(\theta(t, \mu(t)), x), x \in \mathcal{X} \tag{2}
\end{equation*}
$$

$$
\begin{array}{r}
\left.\left.J\left(t, \xi, \eta_{1}, \eta_{2}\right)=\frac{1}{2} \int_{\mathcal{X}} \right\rvert\, \nabla_{\theta} U(\theta(t, \mu), x) \cdot\left(\eta_{1}+\xi \cdot \eta_{2}\right)\right)-f(t, x, U(\theta(t, \mu), \mu)) \mid d \nu(x) \\
\left.\left.+\frac{\lambda}{2} \sum_{i=1}^{m} \right\rvert\, \dot{y}_{i}(t)-\nabla_{\theta} U(\theta(t, \mu), x) \cdot\left(\eta_{1}+\xi \cdot \eta_{2}\right)\right)\left.\right|^{2}
\end{array}
$$

The second method

$$
\begin{array}{r}
\frac{d \theta}{d t}(t)=\eta_{1}(t, \mu(t))+\xi(t) \eta_{2}(t, \mu(t)) \\
\frac{d}{d t} \theta(t) \in \underset{\xi, \eta_{1}, \eta_{2}}{\arg \min } J\left(t, \xi, \eta_{1}, \eta_{2}\right) \tag{4}
\end{array}
$$

$\left(\xi, \eta_{1}, \eta_{2}\right)$ satisfy the following system of equations

$$
\begin{aligned}
\nabla_{\xi} J\left(t, \xi, \eta_{1}, \eta_{2}\right) & =0 \\
\nabla_{\eta_{1}} J\left(t, \xi, \eta_{1}, \eta_{2}\right) & =0 \\
\nabla_{\eta_{2}} J\left(t, \xi, \eta_{1}, \eta_{2}\right) & =0
\end{aligned}
$$

Difficulties of Method 2

- Results in a system of nonlinear PDEs

Inverse Problems-Method 3

Idea: Compute the most probable parameters μ w.r.t the data, and move in the direction of the derivative.

$$
\left\{\begin{array}{l}
M(\theta) \dot{\theta}=F(t, \theta, \mu) \\
\mu(t) \in \arg \min _{\mu}\left\{\sum_{i=1}^{n}\left|f\left(t, x_{i}, U\left(\theta, x_{i}\right), \mu\right)-\dot{y}_{i}(t)\right|^{2}\right\}
\end{array}\right.
$$

Numerical Results

Figure: Inverse problem with 100 sensors, uniformly located

Numerical Results

Figure: Inverse problem with 10 sensors, uniformly located

Numerical Results

Figure: Inverse problem with 10 sensors, uniformly located between - 5 and 0

Numerical Results

Figure: Inverse problem with 10 sensors, moving with the solution

Next Steps

Next Steps

- KdV 1D with varying velocity
- Allen Cahn 1D
- Adaptation of code to multiple dimensions
- Find a good strategy to solve the coupled PDE/ODE problem of the second inverse method.
- Find a data-driven strategy to make sensors move

Bibliography I

R
Bruna, J., Peherstorfer, B., and Vanden-Eijnden, E. (2022). Neural galerkin scheme with active learning for high-dimensional evolution equations.
arXiv preprint arXiv:2203.01360.

