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The Forward Problem
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The Forward Problem
We use methods from [Bruna et al., 2022].

X ⊂ Rd{
∂tu(t, x) = f(t, x, u), (t, x) ∈ [0,∞)×X ,
u(0, x) = u0(x) x ∈ X ,

If u0 ∈ L2(x) =⇒ u(t) ∈ L2(x)

Examples:
▶ Advection-diffusion-reaction equation

f(t, x, u) = b(t, x) · ∇u+ a(t, x) : ∇∇u+G(t, x, u).

▶ KdV equation

f(t, x, u) = −∂3
xu(t, x)− 6u(t, x)∂xu(t, x).
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The forward problem

Goal : Find an approximation ũ of the solution u under the form

ũ(t, x) = U(θ(t), x), t > 0, x ∈ X , θ ∈ Θ.

Idea: If ũ ≈ u, then

rt(θ, η, x) := ∇θU(θ(t), x)T · η − f(t, x, U(θ)), ∀x ∈ X .

Minimize: We search for a good θ(t) ∈ Θ such that for all t > 0

θ̇(t) ∈ argmin
η∈Θ̇

Jt(θ, η), where

Jt(θ, η) :=

∫
X
|rt(θ, η, x)|2dν(x).
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The forward problem
Key point : The Euler–Lagrange Equation

∇ηJt(θ(t), η) = 0 .

This equation can be written as a system of ODEs{
Mθ(t)θ̇(t) = Fθ(t, θ), t > 0

θ(0) = θ0,

where
θ0 ∈ argmin

θ∈Θ

∫
X
|u0(x)− U(θ, x)|2 dν(x),

Mθ(t) :=

∫
X
∇θU(θ, x)T · ∇θU(θ, x)dν(x),

Fθ(t, θ) :=

∫
X
∇θU(θ, x)f(t, x, U(θ))dν(x).

Main consequence : We transform the PDE as an ODE
on θ.
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The forward problem

We solve the KdV equation given by :

∂tu = −∂3
xu− 6u∂xu, t ∈ [0, 4], x ∈ [−20, 40],

where u(0, x) is given.
Solving the ODE system requires dealing with four issues:
▶ Estimating the operators M(θ) and F (t, θ) after proper

specification of the measure ν: For giving samples {xj}nj=1

from uniform probability measure, we get

M(θ) ≈ 1

n

n∑
j=1

∇θU(θ, xj) · ∇θU(θ, xj)
T ,

F (t, θ) ≈ 1

n

n∑
j=1

∇θU(θ, xj)f(t, xj , U(θ)).
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The forward problem

▶ Designing a discrete time-integrator:
▶ Fixed point time integrator: RK4,Euler Methods,...
▶ Adaptative method: RK45, DOPRI5,...

▶ Choosing the parametrization U(θ): the neural network
architecture, Shallow Network (One-hidden-layer)

U(θ, x) =

m∑
i=1

ciφ(x, ωi, bi),

where
φ(x, ω, b) = e−ω2|x−b|2 ,

and the parameter θ = {(ci, wi, bi}mi=1.
▶ Choosing the Python Librairy: Jax, Pytorch, Tensorflow, ...
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Results in Pytorch

Figure: Solution to the KdV equation
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Results in Pytorch

Figure: Solution to the KdV equation in t = 0.
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Results in Pytorch

Figure: Solution to the KdV equation in t = 1.0.
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Results in Pytorch

Figure: Solution to the KdV equation in t = 2.0.
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Results in Pytorch

Figure: Solution to the KdV equation in t = 3.0.
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Results in Pytorch

Figure: Solution to the KdV equation in t = 4.0.
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The Inverse Problem
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Inverse Problems- Method 1

Assume that the function f in (1) depends on a time-dependent
parameter denoted µ(t) ∈ P ⊂ Rp.{

∂tu(t, x) = f(t, x, u, µ), (t, x) ∈ [0,∞)×X ,
u(0, x) = u0(x) x ∈ X .

(1)

Example: Parametric KdV equation

∂tu(t, x) = −∂3
xu(t, x)− µ(t)u(t, x)∂xu(t, x).
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Inverse Problems- Method 1

Assumption: We do not know µ(t). Instead, we are given
observations

ẏi(t) = u̇(t, xi) i = 1, · · · ,m

We now consider the ansatz

ũµ(t, x) = U(θ(t), x, µ(t)), x ∈ X

We search for the derivative of the parameters θ(t) and µ(t)
such that for all t > 0

(θ̇(t), µ̇(t)) ∈ argmin
(η,ξ)∈Θ̇×Ṗ

G(t, η, ξ) .
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Inverse Problems- Method 1

The functional G : [0,∞)× Θ̇× Ṗ → R is defined as

G(t, η, ξ) :=

∫
X

∣∣∣∇θU(θ, x, µ)T · η +∇µU(θ, x, µ)T ξ − f(t, x, U(θ), µ)
∣∣∣2 dν(x)

+λ

m∑
i=1

∣∣∣ẏi(t)−∇θU(θ, x, µ)T · η −∇µU(θ, x, µ)T · ξ
∣∣∣2 .

Key point : The Euler–Lagrange Equation{
∇ηG(t, θ̇, µ̇) = 0

∇ξG(t, θ̇, µ̇) = 0

18/31



Inverse Problems- Method 1

This leads to a system of ODEs of size n+p

Mθθ + λMXm
θθ Mθµ

MT
θµ Mµµ + λMXm

µµ

θ̇

µ̇

 =


Fθ + λ

m∑
i=1

ẏi(t) · ∇θU(θ, xi, µ)

Fµ + λ

m∑
i=1

ẏi(t)∇µU(θ, xi, µ)


▶ the matrix in Rn×n defined by

Mθθ(t) =

∫
X
∇θU(θ, x, µ) · ∇θU(θ, x, µ)

Tdν(x)

and similarly for Mµµ(t) in Rp×p,
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Inverse Problems- Method 1

▶ the matrix in Rn×n defined by

MXm
θθ (t) =

m∑
i=1

∇θU(θ, xi, µ) · ∇θU(θ, xi, µ)
T

and similarly for MXm
µµ (t) in Rp×p,

▶ the matrix in Rn×p defined by

Mθµ(t) =

∫
X
∇µU(θ, x, µ) · ∇θU(θ, x, µ)

Tdν(x),

▶ and the vector in Rp defined by

Fθ(t) =

∫
X
∇θU(θ, x, µ)f(t, x,U(θ, µ), µ)dν(x),

and similarly for Fµ(t) in Rp.
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Difficulties of Method 1

▶ The problem is ill-defined.
▶ How to add the µ(t) inside the Neural Network ?
▶ The initialisation is not clear.
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Inverse Problems-Method 2

As an alternative to our first ansatz U(θ(t), x, µ(t)), we consider
an approximation of u(t) of the form

ũµ(t, x) = U(θ(t, µ(t)), x), x ∈ X (2)

J(t, ξ, η1, η2) =
1

2

∫
X

|∇θU(θ(t, µ), x) · (η1 + ξ · η2))− f(t, x, U(θ(t, µ), µ))| dν(x)

+
λ

2

m∑
i=1

|ẏi(t)−∇θU(θ(t, µ), x) · (η1 + ξ · η2))|2
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The second method

dθ

dt
(t) = η1(t, µ(t)) + ξ(t)η2(t, µ(t)) (3)

d

dt
θ(t) ∈ argmin

ξ,η1,η2

J(t, ξ, η1, η2) (4)

(ξ, η1, η2) satisfy the following system of equations

∇ξJ(t, ξ, η1, η2) = 0

∇η1
J(t, ξ, η1, η2) = 0

∇η2
J(t, ξ, η1, η2) = 0
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Difficulties of Method 2

▶ Results in a system of nonlinear PDEs
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Inverse Problems-Method 3

Idea: Compute the most probable parameters µ w.r.t the
data, and move in the direction of the derivative.

M(θ)θ̇ = F (t, θ, µ)

µ(t) ∈ argminµ

{ n∑
i=1

|f(t, xi, U(θ, xi), µ)− ẏi(t)|2
}
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Numerical Results

Figure: Inverse problem with 100 sensors, uniformly located
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Numerical Results

Figure: Inverse problem with 10 sensors, uniformly located
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Numerical Results

Figure: Inverse problem with 10 sensors, uniformly located between -5
and 0
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Numerical Results

Figure: Inverse problem with 10 sensors, moving with the solution
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Next Steps
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Next Steps

▶ KdV 1D with varying velocity

▶ Allen Cahn 1D

▶ Adaptation of code to multiple dimensions

▶ Find a good strategy to solve the coupled PDE/ODE
problem of the second inverse method.

▶ Find a data-driven strategy to make sensors move
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