Data assimilation methods with Neural
Galerkin schemes

Joubine Aghili, Joy Atokple, Marie Billaud-Friess, Guillaume
Garnier, Olga Mula, Norbert Tognon

January 27, 2024

1/31



Outline of the presentation

The Forward Problem
Mathematical formulation of the forward problem
Numerical Experiments

The Inverse Problem
The first method
The second method
The third method

Next Steps

Appendix

2/31



The Forward Problem



The Forward Problem
We use methods from [Bruna et al., 2022].

X CRY

{ owu(t,z) = f(t,z,u), (t,z)€[0,00) %X X,
uw(0,z) = wup(x) reX,

If ug € L%*(z) = u(t) € L*(z)

Examples:

» Advection-diffusion-reaction equation
flt,z,u) =0b(t,z) - Vu+a(t,z) : VVu+ G(t, z,u).
> KdV equation
ft,z,u) = —03u(t, z) — 6u(t,z)0pu(t, x).
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The forward problem

Goal : Find an approximation u of the solution v under the form

u(t,z) =U(0(t),z), t>0, z€X, 0cO.|

Idea: If u = u, then
rt(0>n7 l’) = VGU(Q(t)ax)T /. f(tvxv U(Q)), Vo e X.
Minimize: We search for a good 6(t) € © such that for all t > 0

0(t) € argmin J;(6,n), where
neoe

Ji0.1m) = /X (8,7, 2) P (z).
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The forward problem
Key point : The Euler-Lagrange Equation

Vth(Q(t),n) = 0 .

This equation can be written as a system of ODEs

{M@(t)é(t) = Fy(t,0), t >0

6(0) = 6o,
where
0o € argmln/ lug(z) — U0, 2)|* dv(z),
0cO

Moy(t) ::/XVQU(H,x)T -VoU (0, z)dv(x),

Fy(t,0) :—/){V(;U(H,a:)f(t,x,U(G))du(x).

Main consequence : We transform the PDE as an ODE

on 0.
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The forward problem
We solve the KdV equation given by :
du = —0ou — 6udyu, t<€0,4], x € [~20,40],

where u(0, z) is given.
Solving the ODE system requires dealing with four issues:

» Estimating the operators M () and F(t,0) after proper
specification of the measure v: For giving samples {xj}?zl
from uniform probability measure, we get

1 n
M(0) ~— > VU0, z5) - VoU(0, 2;5)",
j=1

F(t,0) %% S VU6, 3,) (5, U(9)).
=1
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The forward problem

» Designing a discrete time-integrator:

» Fixed point time integrator: RK4,Euler Methods,...
» Adaptative method: RK45, DOPRIS,...

» Choosing the parametrization U(6): the neural network
architecture, Shallow Network (One-hidden-layer)

U, z) = Z cip(z,wi, bi),
i=1

where
—w?|z—b|?

o(z,w,b) =¢ ,

and the parameter 6 = {(¢;, w;, b }1" ;.

» Choosing the Python Librairy: Jax, Pytorch, Tensorflow, ...
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Results in Pytorch
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Figure: Solution to the KdV equation
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Results in Pytorch
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Figure: Solution to the KdV equation in ¢ = 0.
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Results in Pytorch
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Figure: Solution to the KdV equation in ¢t = 1.0.
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Results in Pytorch
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Figure: Solution to the KdV equation in ¢t = 2.0.
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Results in Pytorch
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Figure: Solution to the KdV equation in ¢t = 3.0.
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Results in Pytorch

2.5 17 —— ytrue

===y approx

Figure: Solution to the KdV equation in ¢t = 4.0.
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The Inverse Problem



Inverse Problems- Method 1

Assume that the function f in (1) depends on a time-dependent
parameter denoted u(t) € P C RP.

{ owu(t,z) = f(t,z,u,p), (t,x)€[0,00)x X, (1)

u(0,2) = wuo(x) reX.

Example: Parametric KAV equation

Opu(t,x) = —93u(t, x) — p(t)u(t, z)0ult, ).
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Inverse Problems- Method 1

Assumption: We do not know p(t). Instead, we are given
observations

git) = lt,z;) i=1,--,m|

We now consider the ansatz

Ut ) = U((t), a, plt)), o € X

We search for the derivative of the parameters 0(¢) and p(t)
such that for all ¢ > 0

(6(t), u(t)) € argmin G(t,n,€) |
(n,§)eOXP
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Inverse Problems- Method 1

The functional G : [0,00) x © x P — R is defined as

Gltn )= [ [VoU@.a ) 0+ V0.0.0)7€ = f(t.2.U0). )] advta)

m

A

i=1

5:(0) = VU (O,,0)" 1 = VU 0,0, 0)" €]

Key point : The Euler-Lagrange Equation

an(t,é,/:L) =0
VeG(t,0,01) =0
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Inverse Problems- Method 1

This leads to a system of ODEs of size n+p

(MeeJr/\Mjﬁ,m Mo, )(9) FHAZ% VoU(0, i, 1)

Mg,

X’VYL
u My + AM [,

fi F.+ )\Zy'i(t)VMU(@,xi,u)

i=1
» the matrix in R™*" defined by

Mg (t / VoU(0, z, 1) - VoU(0, 2, )" dv(x)

and similarly for M, (t) in RP*P,
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Inverse Problems- Method 1

» the matrix in R™*" defined by

Mg™ (t) ZWU (0, 21, 1) - VoU(8, 24, 11) "
=1

and similarly for M, lﬁm (t) in RP*P,
» the matrix in R"*P defined by

My, (t) /VUGx,u) VoU(0, 2, )T dv(x),
» and the vector in RP defined by
:/ VoU(0,z, ) f(t, 2, U(0, ), p)dv(z),
x

and similarly for F),(t) in R?.
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Difficulties of Method 1

» The problem is ill-defined.
» How to add the u(t) inside the Neural Network ?

» The initialisation is not clear.
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Inverse Problems-Method 2

As an alternative to our first ansatz U(0(t), x, u(t)), we consider
an approximation of u(t) of the form

ﬂu(t,x) =

U0, p(t)),

x),reX

(2)

K &) = 5 [ 90U 10,3) -+ €)= 0,2, U0 ), (o)

22/31

+- Zlyz

— VoU(0(t, ),

z) - (m+€-m)))?



The second method

do

2O =t p(0) + €Dt u(0))

—0(t) € argmin J(¢,&,m1,12)
dt &m1,m2

(&,m1,m2) satisfy the following system of equations

VgJ(t,f,m»?h) =0
Vi (¢, & m,m2) =0
VW2J(75,§,7717772) =0
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Difficulties of Method 2

> Results in a system of nonlinear PDEs
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Inverse Problems-Method 3

Idea: Compute the most probable parameters p w.r.t the
data, and move in the direction of the derivative.

M(0)0 = F(t,6, 1)

n

pult) € argmin, { 7 |F(t,25, U0, 21), 1) = (1)}

i=1
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Numerical Results
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Figure: Inverse problem with 100 sensors, uniformly located
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Numerical Results
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Numerical Results
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Numerical Results
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Next Steps
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Next Steps
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» KdV 1D with varying velocity

» Allen Cahn 1D

» Adaptation of code to multiple dimensions

» Find a good strategy to solve the coupled PDE/ODE
problem of the second inverse method.

» Find a data-driven strategy to make sensors move
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