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Introduction

» All organisms are subject to mutations

» These new traits can change the selective value (fitness) of
an individual

> Fitness : ability of an individual with a certain genome to
survive and reproduce

» How these mutations affect selective value is a central
question in evolutionary biology

» The density of the distribution of these effects is called the
Distribution of Fitness Effect (DFE)

2/39



Introduction

Why study the DFE?

» DFE is important of these arising mutations define the
range of possible evolutionary trajectories a population
can follow

> Study the effects of new mutations in an individual to see if
they are beneficial or not

» Understanding and quantifying the genetic diversity of human
diseases and its future evolution

» Predict the consequences of maintaining a small population of
animals or plants, as in captive breeding programs
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L'expérimentation

Goal :

Inferring DFE from experimental measurements of selective value
over time
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What data?
Two experimental protocols (Robert et al. 2018 [ROR"18])

> See in real time the appearance of mutations in e.coli
» New measurements of cell fitness
— New data to estimate the DFE

Ficure - L. Robert and al, Science, 2018
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What data?

cf. Video
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microfluidic Mutation Accumulation (uMA)

experiment
» Measuring the fitness of cells
» 1476 parallel and independent channels

>1000///’/// / ////////////////
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microfluidic Mutation Accumulation (uMA)
experiment

cf. Video
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Model Building

> A first model. (Robert, 18)

» The mutations are deleterious and appear according to a
Poisson process P(At)

> (W;)icr+ the selective value over time of an individual

s; = Wi, = Wi i>0
l Wti—l ’

s; effect of the {i}—i-th mutation on the fitness of the
individual.

> If (s;); arei.i.d

» DFE = probability density of s;
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Model Building

» By taking the logarithm, we have

N,
InW, = Zln(l—si), N, ~P(At), A>0
i=1

> It is a compound Poisson process : X; ~In(1 —s;) et

N,
Yi=) X
i=1

}Q ~vlrll4ﬂ,
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Model Building

» We want to model the errors in the measurements

N;
L= ]a=spe, Ne~P(A1), A>0,

i=1

> By taking the logarithm, we have (10). Dans ce cas on a

~

Ny
Zy = Yt"'ét:ZXi'*'fEt
i=1
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Model Building

1. Z] : noisy measure in channel j € J at time .

2. th : number of mutation in channel j. (N;(t),j > 1) are i.i.d
Poisson processes with intensity A € (0, o0).

3. X,i jump of k-th mutation in channel j. (X{)i’]'zo are i.i.d
with density f € L'(R) N L*(RR).

4. ¢ represents the measurement noise at time ¢ for channel
j. (4)]'20 are i.i.d and that ]E(ei) =0.

We consider a noisy compound Poisson process :

.
zl=|) X[|+el,t=0|
k=1
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cf. Video 3
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Estimate the DFE

In each model, we want to estimate the probability density of X;
from the observations
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Estimate the DFE

In each model, we want to estimate the probability density of X;
from the observations

We want an approximation

supEg[l|f,, f11%] < Cp2
feF
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Strategy, Tools & Methods

Strategy : We want to estimate the characteristic function of X :

(heuristic) If @x (&) ~ Px(£), then f(x) = f(x)

Indeed, the characteristic function ¢@x — Density f of X :

_1
C2n

f(x) _LR px(&)e ™ dE
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Building the estimator

We consider a noisy compound Poisson process :

(M)
zl = Zx,ﬁ +el,t>0].
k=1

For a single channel Z/, the characteristic function is :

Vu € R, @ i(u) = e M g, (u)
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Building the estimator
Consider two different times 0 < t < t,, then

P2y _ Aty M (=) px(u)
Pz,
Then
px(u) =1+ ——(log gz, (u)-logpyz, (1))

th—h
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Building the estimator
Consider two different times 0 < t < t,, then

P2y _ Aty M (=) px(u)
Pz,
Then
Px(u) =1+ —(logpz, (1) ~log gz, (u)

It leads us to define

(7)‘{<(u):1+t t (log @}, (u)-log@) (u))
-
with
='] _ ! Z] zuZi —~] _1 L iuZl
(Pz,(u)——;:ll ", @y (u)—7]§:1e ,
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Building the estimator

As there is no guarantee that the previous quantities will not
explode, a cut-off is added to ensure this.

~J (i 1 Y
px(u)=1+ —s {log(pztz(u) 1|1ogq7§t2(u)|sln(])

—]
—log ¥z, (1) 1|1og<ﬁ§,1 (u)lsln(l)}

We estimate f by Fourier inversion.
For any m € (0, 00) ,

1 m
fm] f 7’”x(pX( u)du,x €R

2nm
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Building the estimator

As there is no guarantee that the previous quantities will not
explode, a cut-off is added to ensure this.

N 1 5l (u).
Px(u)=1+ —s {log(pztz(u) 1|1og¢‘§t2(u)|sln(])
—~]

~logdy, (u)- Liog7), (u)lsln(])}

We estimate f by Fourier inversion.
For any m € (0, 00) ,

— 1 moo.

fug) === | ™ @)(u)du, x e R
’ 27 )

Here, the choice of m is very important because it defines the

frequencies that we keep to apply the inverse Fourier

transformation
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Theorem : convergence of the estimator

For all reals 0 < t; < t, such that t, < 1log(Jt,)
Jt; = 0, Jt; = o0 as ] — oo and for any m < C{ptz’ the following
inequality holds

o [ (u)]
4K]:t11t2 IE[XIZ] IE[gZ] m '
<t2—t1>2'( T +4<Jtl->2)

2 4t; m
= 2 4e*i du
(1) <+ ) s [ e

where Kj;, ;, and C{ptz depends on m, t},t, and log ¢, (:).
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Theorem : adaptative estimator

Question : How to select m?

» The dominant terms :
biais term : Jue[im'm] lox (u)|*>du
4eth2 Im du
J(ty=11)? J=m lop, (u)]?
» Through differentation, the optimal 71} satisfies

variance term :

4gett:

2 —
lpx (my)|” = ]—(tz—t1)2(1+m] ).
then
’ px (my) 4ae*t
(1+72) CJ(t-t)? ]
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Theorem : adaptive estimator

It leads us to define the empirical cutoff parameter

Kjt,t 2\&
My =max{u>0: | | 72 }/\ J(t,—t1)7) , a€(0,1)
I { \/1+u2 Vit —t1) ( )
where
@] | | K]t1t2
xt V1+u2 VIt —t1)

and x; = 2¢*2 + x4/In(J (t, — £1)?), k > 0
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Theorem : adaptive estimator

For all reals 0 < t; < t, such that t, < 21og(Jt,) and (m)* < C{ptz'
Jt; > o0, Jt; — oo as ] — oo. Then,

e s U=t () o
B[, - fIP] < inf {15y 1P+ et B0 L gy

2log(]) \?
+(2+(t2—t1)) - Ty

where A, T] and c(0) satisfies good conditions.
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Numerical Result

Ficure — Reconstruction of the Cauchy C(0, 1) distribution with J
channels, corrupted by a Gaussian noise N'(0,1) with | € 10%,105,1060.
tl = O.l,tz = 1,m =2
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Numerical Result

FiGUre — Reconstruction of the Gamma I'(3) distribution with ]
channels, corrupted by a Gaussian noise 7(0,1) with
J€10%10%,10%107. ¢, =0.1,t,=1,m=3
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And now ? An minimax estimator

A problem of nonparametric estimation is characterized by
> A class of functions F that contains f

> A family of probability measure {IP, f € F} associated
with the observations.

Definition (Maximum risk)

r(f,) = supE (I, - F1I?)

feF

Previous goal : Obtain upper bounds on the maximum risk,
i.e

r(ﬁ):;upIEf(llﬁ—fllz)SCw,% where ¢, —0.
cF
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And now ? An minimax estimator

How to know that we have the best possible estimator?

Definition (Minimal risk)

R;, = infsup E(|[f, - fII?)
fu feF

If you have a bound on the maximum risk

r(f,) = f{uprEf(llﬁ—sz) <Cyp>2 where ¢, —0.

then

limsup ¢,,*R;, < C

n—-oo
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And now ? An minimax estimator

Definition (Optimal rate of convergence)

A positive sequence (¢,,), is called an optimal rate of
convergence of estimators on F if there exists c>0and C >0

limsup,*R;, <C| and |[liminfy,*R}, >c|

n—00 n—00

Definition (Rate optimal estimator)

An estimator f, satisfying

sup Eg(||fy = f1l) < C'y
feF
where (1,,), is an optimal rate of convergence of estimators
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And now ? An minimax estimator

Definition (Asymptotically efficient estimator)
An estimator f,; is called asymptotically efficient if

*
n

=1.

n—-oo
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And now ? An minimax estimator

How to prove
liminf, >R} > c?

n—-oo
There is a classical "general scheme"

> Step 1. Reduction to bounds in probability;
> Step 2. Reduction to a finite number of hypotheses;
» Step 3. Choice of 2s-separated hypotheses.
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And now ? An minimax estimator

Step 1. Reduction to bounds in probability
We obtain a lower bound on Eg(;,2||f,, — f|I?) with the Markov
inequality.

For any real a >0,

Eo (7 21f — fIIP) = a®P(y; I - Fll = @)
= a’P([f, - fll = s)

where s =5, = A,,.
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And now ? An minimax estimator

Step 1. Reduction to bounds in probability
We obtain a lower bound on Eg(;,2||f,, — f|I?) with the Markov
inequality.

For any real a >0,

Eo (7 21f — fIIP) = a®P(y; I - Fll = @)
= a’P([f, - fll = s)
where s =5, = A,,.

It suffices to find a lower bound on the minimax probabilities

infsup P(||f, - 1| > s)
fu feF
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And now ? An minimax estimator

Step 2. Reduction to a finite number of hypotheses

It suffices to try a finite number of hypothesis.

igfsupIP(HE—fH >s)>inf sup IP(HE —fll=s)
fo feF fu fElforfu)
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And now? An minimax estimator
Step 3. Choice of 2s-separated hypotheses

Assume that

Ui fill > 25, Vk,j k.

Then for any estimator fn

P (If = fill = 5) 2 Ps (" = j) (1)
where ¢ : X —{0,1,..., M} is the minimum distance test defined
by

y* =arg min (If, - il
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And now? An minimax estimator
Step 3. Choice of 2s-separated hypotheses

Assume that

Ui fill > 25, Vk,j k.

Then for any estimator fn

P (If = fill = 5) 2 Ps (" = j) (1)
where ¢ : X —{0,1,..., M} is the minimum distance test defined
by

y* =arg min (If, - il

It follows that

inf P >s) > =inf P
1% ;lelfp (1fyy = FIl = 8) = pons := 13 Og}% i(W=7)
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And now ? An minimax estimator

Goal : It suffices to obtain ¢ such that

PeM = irlll)forsnjz;);/[ll’j(zp zj)=>c

35/39



And now ? An minimax estimator

Theorem (Tsybakov)

Let fo,..., fsr in F, for some M > 1 such that

L. ||fj—fk||ZZs,forallosj<kSM;

2. IPj <Py, Vj=0,1,...,M, and

M

1

o ) KL(P?",P§") < alogM
=1

or

with 0 < a < 1/8 and IPj :IPf],, j=0,1,...,M.

Then, for ¢ = s/A, we have

infsup E| ;I - fI| > ca)4®.
f feF
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And now ? An minimax estimator

Work in progress : Is my estimator minimax ?
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Perspective

» Apply the numerical methods on experimental data.
» Is this estimator minimax?

i.e Is it the best estimator among all possible estimators ?
» Can this estimation be done through PDEs?
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