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Introduction

I All organisms are subject to mutations
I These new traits can change the selective value (fitness) of

an individual
I Fitness : ability of an individual with a certain genome to

survive and reproduce
I How these mutations affect selective value is a central

question in evolutionary biology

I The density of the distribution of these effects is called the
Distribution of Fitness Effect (DFE)
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Introduction

Why study the DFE ?
I DFE is important of these arising mutations define the

range of possible evolutionary trajectories a population
can follow

I Study the effects of new mutations in an individual to see if
they are beneficial or not

I Understanding and quantifying the genetic diversity of human
diseases and its future evolution

I Predict the consequences of maintaining a small population of
animals or plants, as in captive breeding programs
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L’expérimentation

Goal :

Inferring DFE from experimental measurements of selective value
over time
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What data?
Two experimental protocols (Robert et al. 2018 [ROR+18])
I See in real time the appearance of mutations in e.coli
I New measurements of cell fitness

=⇒ New data to estimate the DFE

Figure – L. Robert and al, Science, 2018
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What data?

cf. Video
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microfluidic Mutation Accumulation (µMA)
experiment

I Measuring the fitness of cells
I 1476 parallel and independent channels
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microfluidic Mutation Accumulation (µMA)
experiment

cf. Video
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Model Building
I A first model. (Robert, 18)
I The mutations are deleterious and appear according to a

Poisson process P (λt)
I (Wt)t∈R+ the selective value over time of an individual

si =
Wti−1

−Wti

Wti−1

, i > 0 ,

si effect of the {i}−i-th mutation on the fitness of the
individual.

I If (si)i are i.i.d

Wt

W0
=

Nt∏
i=1

(1− si) , Nt ∼ P (λt)

I DFE = probability density of si
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Model Building

I By taking the logarithm, we have

lnWt =
Nt∑
i=1

ln(1− si) , Nt ∼ P (λt) , λ > 0

I It is a compound Poisson process : Xi ∼ ln(1− si) et
Yt ∼ lnWt,

Yt =
Nt∑
i=1

Xi .

10 / 39



Model Building

I We want to model the errors in the measurements

Wt

W0
=

Nt∏
i=1

(1− si)εt , Nt ∼ P (λt) , λ > 0 ,

I By taking the logarithm, we have (10). Dans ce cas on a

Zt := Yt + ξt =
Nt∑
i=1

Xi + ξt ,
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Model Building

1. Zjt : noisy measure in channel j ∈ J at time t.

2. N j
t : number of mutation in channel j. (Nj(t), j ≥ 1) are i.i.d

Poisson processes with intensity λ ∈ (0,∞).

3. Xjk jump of k-th mutation in channel j. (Xji )i,j≥0 are i.i.d
with density f ∈ L1(R)∩L2(R).

4. εjt represents the measurement noise at time t for channel
j. (εjt )j≥0 are i.i.d and that E(εjt ) = 0.

We consider a noisy compound Poisson process :

Z
j
t =


N
j
t∑

k=1

X
j
k

+ εjt , t ≥ 0 .
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cf. Video 3
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Estimate the DFE

In each model, we want to estimate the probability density of Xi
from the observations

We want an approximation

sup
f ∈F

Eθ[‖fn, f ‖2] ≤ Cψ2
n
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Strategy, Tools & Methods

Strategy : We want to estimate the characteristic function of X :

(heuristic) If ϕX(ξ) ' ϕ̂X(ξ), then f (x) ' f̂ (x)

Indeed, the characteristic function ϕX → Density f of X :

f (x) =
1

2π

∫
R

ϕX(ξ)e−ixξdξ
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Building the estimator

We consider a noisy compound Poisson process :

Z
j
t =


N
j
t∑

k=1

X
j
k

+ εjt , t ≥ 0 .

For a single channel Zjt , the characteristic function is :

∀u ∈R , ϕ
Z
j
t
(u) = e−λt+λtϕX (u) ·ϕε(u)
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Building the estimator
Consider two different times 0 < t1 < t2, then

ϕZt2
ϕZt1

= e−λ(t2−t1)+λ(t2−t1)ϕX (u)

Then
ϕX(u) = 1 +

1
t2 − t1

(
logϕZt2 (u)− logϕZt1 (u)

)

It leads us to define

ϕ̂ JX(u) = 1 +
1

t2 − t1

(
log ϕ̂ JZt2

(u)− log ϕ̂ JZt1
(u)

)
with

ϕ̂
′J
Zτ

(u) =
1
J

J∑
j=1

iZ
j
τe
iuZ

j
τ , ϕ̂ JZτ (u) =

1
J

J∑
j=1

eiuZ
j
τ ,

log ϕ̂ JZτ (u) =
∫ u

0

ϕ̂
′J
Zτ

(z)

ϕ̂ JZτ (z)
dz
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Building the estimator

As there is no guarantee that the previous quantities will not
explode, a cut-off is added to ensure this.

ϕ̃ JX(u) = 1 +
1

t2 − t1

{
log ϕ̂ JZt2

(u) · 1| log ϕ̂ J
Zt2

(u)|≤ln(J)

− log ϕ̂ JZt1
(u) · 1| log ϕ̂ J

Zt1
(u)|≤ln(J)

}
We estimate f by Fourier inversion.
For any m ∈ (0,∞) ,

f̂m,J (x) =
1

2π

∫ m

−m
e−iuxϕ̃ JX(u)du , x ∈R

Here, the choice of m is very important because it defines the
frequencies that we keep to apply the inverse Fourier
transformation
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Theorem : convergence of the estimator

For all reals 0 < t1 < t2 such that t2 ≤ 1
4 log(Jt2)

Jt1→∞ , Jt2→∞ as J →∞ and for any m < CJt1,t2 , the following
inequality holds

E

(
||f̂m,J − f ||2

)
≤ ||fm − f ||2 +

2∑
i=1

4e4ti

J(t2 − t1)2

∫ m

−m

du

|ϕε(u)|2

+
4KJ,t1,t2
(t2 − t1)2 ·

(
E[X2

i ]
Jti

+
E[ε2]

Jt2i
+ 4

m

(Jti)2

) .

where KJ,t1,t2 and CJt1,t2 depends on m,t1, t2 and logϕε(·).
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Theorem : adaptative estimator

Question : How to select m ?
I The dominant terms :

biais term :
∫
u∈[−m,m] |ϕX(u)|2 du

variance term : 4e4t2

J(t2−t1)2

∫ m
−m

du
|ϕε(u)|2

I Through differentation, the optimal mJ satisfies

|ϕX(mJ )|2 =
4ae4t2

J(t2 − t1)2 (1 +mJ
2) .

then ∣∣∣∣∣ ϕX(mJ )√
(1 +mJ

2)

∣∣∣∣∣2 =
4ae4t2

J(t2 − t1)2 .

22 / 39



Theorem : adaptive estimator

It leads us to define the empirical cutoff parameter

m̂J = max
{
u ≥ 0 :

∣∣∣∣ ϕX(u)
√

1 +u2

∣∣∣∣ ≥ κJ,t1,t2√
J(t2 − t1)

}
∧

(
J(t2 − t1)2

)α
, α ∈ (0,1)

where

ϕJX(u) = ϕ̃JX(u) ·1
∣∣∣ ϕ̃JX(u)
√

1 +u2

∣∣∣ ≥ κJ,t1,t2√
J(t2 − t1)

and κJ = 2e2t2 +κ
√

ln(J(t2 − t1)2), κ > 0
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Theorem : adaptive estimator

For all reals 0 < t1 < t2 such that t2 ≤ 1
4 log(Jt2) and (m)α < CJt1,t2 ,

Jt1→∞ , Jt2→∞ as J →∞. Then,

E

[
‖f m̂J

− f ‖2
]
≤ inf
m∈[0,mα

m]

{
‖fm − f ‖2 +C

ln(J(t2 − t1)2) ·m · (1 +m2)
J(t2 − t1)2 + C̃A

}
+
(
2 +

2log(J)
(t2 − t1)

)2
· TJ

where A,Tj and c(θ) satisfies good conditions.
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Numerical Result

Figure – Reconstruction of the Cauchy C(0,1) distribution with J
channels, corrupted by a Gaussian noiseN (0,1) with J ∈ 104,105,106.
t1 = 0.1, t2 = 1,m = 2
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Numerical Result

Figure – Reconstruction of the Gamma Γ (3) distribution with J
channels, corrupted by a Gaussian noise J (0,1) with
J ∈ 104,105,106,107. t1 = 0.1, t2 = 1,m = 3
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And now? An minimax estimator

A problem of nonparametric estimation is characterized by
I A class of functions F that contains f
I A family of probability measure {Pf , f ∈ F } associated

with the observations.

Definition (Maximum risk)

r(f̂n) = sup
f ∈F

Ef (‖f̂n − f ‖2)

Previous goal : Obtain upper bounds on the maximum risk,
i.e

r(f̂n) = sup
f ∈F

Ef (‖f̂n − f ‖2) ≤ Cψ2
n where ψn→ 0 .
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And now? An minimax estimator

How to know that we have the best possible estimator?

Definition (Minimal risk)

R∗n = inf
f̂n

sup
f ∈F

Ef (‖f̂n − f ‖2)

If you have a bound on the maximum risk

r(f̂n) = sup
f ∈F

Ef (‖f̂n − f ‖2) ≤ Cψ2
n where ψn→ 0 .

then
limsup
n→∞

ψ−2
n R∗n ≤ C
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And now? An minimax estimator

Definition (Optimal rate of convergence)
A positive sequence (ψn)n is called an optimal rate of
convergence of estimators on F if there exists c > 0 and C > 0

limsup
n→∞

ψ−2
n R∗n ≤ C and liminf

n→∞
ψ−2
n R∗n ≥ c .

Definition (Rate optimal estimator)
An estimator f ∗n satisfying

sup
f ∈F

Ef (‖f ∗n − f ‖) ≤ C∗ψn

where (ψn)n is an optimal rate of convergence of estimators

29 / 39



And now? An minimax estimator

Definition (Asymptotically efficient estimator)
An estimator f ∗n is called asymptotically efficient if

lim
n→∞

r(θ∗n)
R∗n

= 1 .
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And now? An minimax estimator

How to prove
liminf
n→∞

ψ−2
n R∗n ≥ c?

There is a classical "general scheme"

I Step 1. Reduction to bounds in probability ;
I Step 2. Reduction to a finite number of hypotheses ;
I Step 3. Choice of 2s-separated hypotheses.
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And now? An minimax estimator
Step 1. Reduction to bounds in probability
We obtain a lower bound on Eθ(ψ−2

n ‖f̂n − f ‖2) with the Markov
inequality.

For any real α > 0,

Eθ(ψ−2
n ‖f̂n − f ‖2) ≥ α2

P(ψ−1
n ‖f̂n − f ‖ ≥ α)

= α2
P(‖f̂n − f ‖ ≥ s)

where s = sn = Aψn.

It suffices to find a lower bound on the minimax probabilities

inf
f̂n

sup
f ∈F

P(‖f̂n − f ‖ ≥ s)
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And now? An minimax estimator

Step 2. Reduction to a finite number of hypotheses

It suffices to try a finite number of hypothesis.

inf
f̂n

sup
f ∈F

P(‖f̂n − f ‖ ≥ s) ≥ inf
f̂n

sup
f ∈{f0,··· ,fm}

P(‖f̂n − f ‖ ≥ s)
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And now? An minimax estimator
Step 3. Choice of 2s-separated hypotheses

Assume that

‖fj − fk‖ ≥ 2s , ∀k, j : k , j.

Then for any estimator f̂n

Pfj (‖f̂n − fj‖ ≥ s) ≥ Pfj (ψ
∗ , j) (1)

where ψ : X → {0,1, . . . ,M} is the minimum distance test defined
by

ψ∗ = arg min
0≤k≤M

(‖f̂n − fk‖).

It follows that

inf
f̂n

sup
f ∈F

P(‖f̂n − f ‖ ≥ s) ≥ pe,M := inf
ψ

max
0≤j≤M

Pj(ψ , j)
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And now? An minimax estimator

Goal : It suffices to obtain c such that

pe,M := inf
ψ

max
0≤j≤M

Pj(ψ , j) ≥ c
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And now? An minimax estimator

Theorem (Tsybakov)
Let f0, . . . , fM in F , for some M ≥ 1 such that

1. ‖fj − fk‖ ≥ 2s, for all 0 ≤ j < k ≤M ;

2. Pj � P0, ∀j = 0,1, . . . ,M, and

1
M

M∑
j=1

KL(P⊗nj ,P
⊗n
0 ) ≤ α logM or

M∑
j=1

χ2(P⊗nj ,P
⊗n
0 ) ≤ αM .

with 0 < α < 1/8 and Pj = Pfj , j = 0,1, . . . ,M.

Then, for ψ = s/A, we have

inf
f̂

sup
f ∈F

E

[
ψ−2
n ‖f̂n − f ‖2

]
≥ c(α)A2 .
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And now? An minimax estimator

Work in progress : Is my estimator minimax ?
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Perspective

I Apply the numerical methods on experimental data.
I Is this estimator minimax?

i.e Is it the best estimator among all possible estimators ?
I Can this estimation be done through PDEs?
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